中華民國專利證書
發明第 I 276981 號

發明名稱：一種快速運算含電阻迴路之高速積體電路RLC互連線路系統動差之方法

專利權人：長庚大學

發明人：李恆哲、朱家齊、馮武雄、賴銘宏

專利權期間：自2007年3月21日至2024年6月7日止

上發明業經專利權人依專利法之規定取得專利權

經濟部智慧財產局
局長 蔡練生

中華民國96年3月21日
【54】名稱： 一種快速運算含電阻迴路之高速積體電路RLC互連線路系統動差之方法

METHOD OF MOMENT COMPUTATION IN RLC INTERCONNECTS OF HIGH SPEED VLSI WITH RESISTOR LOOP

【21】申請案號：093116448
【22】申請日：中華民國93(2004)年6月8日
【11】公開編號：200426633
【43】公開日：中華民國93(2004)年12月1日

【72】發明人： 李恆哲 LEE, HERNG JER；朱家齊 CHU, CHIA CHI；馮武雄 FENG, WU SHIUNG；
 賴銘宏 LAI, MING HONG

【71】申請人： 長庚大學 CHANG GUNG UNIVERSITY
 桃園縣龜山鄉文化一路259號

【74】代理人：

[57]申請專利範圍：

1. 一種快速運算含電阻迴路之高速積體電路 RLC 互連線路系統動差之方法，當互連線路包含電阻電路架構時，其線路中第 k 階電壓動差為：

\[V_{f,k} = V_{f,k}^{(r)} - \frac{V_{oc}}{R_{link} + R_{th}} \cdot v_{k}(t) \text{ for } n_j \in N \]

其中，

- \(n_j \) 表示電路模型中第 j 個節點；
- \(N \) 表示電路模型中所有節點之集合；
- \(V_{f,k}^{(r)} \) 表示電路分割出生成樹部份，所

貢獻 \(n_j \) 節點之第 k 階電壓動差；

\(V_{f,k}^{(r)} \) 表示電路分割出電阻連路部份，

所貢獻 \(n_j \) 節點之電壓動差，其數值

並不隨階數而變更；

\(V_{oc} \) 表示電阻連路所連結之兩端，在

電阻電路 \(R_{link} \) 開路時之電壓差；

\(R_{th} \) 表示將所有電壓源、電流源設為

0 後，再在 \(R_{link} \) 置換為一安培電流流

源時，在 \(R_{link} \) 雙端所觀察到之戴維寧

等效電阻值；
V_{k}为电路中节点n_{k}上第k阶电压差；
而其处理多重电阻链路之问题，乃应用循环二元决定图，分别求解及储存电路进行电阻链路开路及电路
进行戴维宁等效电路化简步驟之系统动差；其中，
\(f_{O} \) 表示将电路中电阻链路 \(R_{\text{link}} \) 开路，以计算电路中各节点之动态差；
\(f_{T} \) 表示将电路以戴维宁等效电路取代，由 \(R_{\text{link}} \) 两端观察其戴维宁等效

2. 如申请专利范围第1项所述之一种快速运算含电容电路之高速电路
步骤简，本演算法仅需储存 O.O…O.T、O.O…O.T、…O.O.T、O.T、
T之系统动差，以重叠原理更新 O.O…O.O、O.O…O.O、…O.O.O、
O.O、O电路之系统动差；其中，O.O…O.T 表示针对电路中个电
阻链路 \(R_{\text{link}} \) 一一进行开路计算，並
於最後一個电场链路 \(R_{\text{link}} \) 進行戴维奈
等效电路计算，以求得各节点之

3. 如申请专利范围第2项所述之一种快速运算含电容电路之高速电路
RLC 互连电路系统动差之方法，其中，其循序二元决定图可进一步化
简为简化循序二元决定图，以减少
其运算複雜度；其中，於同一层
且最後一步骤为戴维奈等效电路化
简（即 X.X…X.T，其中 X 代表 O 或
T）之电路架构均相同；而於同一层
且最後一步骤为电场链路开路（如 O.
T.O 与 T.O.O）之电路，其电路架构相
似，其相異点僅在於电源驅动位置
不同。

4. 步化简，本演算法仅需储存 O.O…O.
O.T，O.O…O.T，…O.O.T，O.T，
T之系统动差，以重叠原理更新 O.
O…O.O，O.O…O.O，…O.O.O、
O.O，O电路之系统动差；其中，O.
O…O.T 表示针对电路中个电
阻链路 \(R_{\text{link}} \) 一一进行开路计算，並
於最後一個电场链路 \(R_{\text{link}} \) 進行戴维奈
等效电路计算，以求得各节点之

5. 圖式簡單说明：
第一圖係為本發明之系統動差之流程圖。
第二圖係為本发明施行本发明之
演算工具的輸入方塊圖。
第三圖係為本发明包含电容链路
之 RLC 條状电路模型。
第四圖係為本发明包含電阻链路
之開路電壓及戴維寧等效電壓之第 k
階电路模型。
第五圖係為本发明运算包含单一
電阻链路之电路系统动差之流程圖。
第六圖係為本发明运算包含多重
電阻链路之电路系统动差之流程圖。
第七圖係為本发明建模簡化循序
二元決定圖之示意圖。
第八圖係為本发明中具有三條電
阻链路的电路模型，可驗証所提出演
算法之正確性。
第一图
第二圖
第五圖

第六圖
第七圖
1, 2, 3 為節點編號

第八圖